GPX4 is a selenoprotein that plays a critical role in protecting cells against oxidative stress and ferroptosis. The nucleophilic selenocysteine residue (Sec) located in the catalytic center of GPX4 can be exploited to design covalent inhibitors. Previously reported covalent GPX4 inhibitors always contain reactive alkyl chloride groups, conferring poor selectivities. Recently, the Schreiber group reported that ML210 , a direct covalent inhibitor targeting GPX4 in cells, exhibits much more potency and remarkable selectivity compared with chloroacetamide inhibitors. More interestingly, an unprecedented covalent binding mechanism is involved in the ML210 targeting GPX4 in cells. ML210 was previously reported as a ferroptosis inducer. Due to lack of an apparent covalent reactive group and inability to react with small molecule thiols directly, the covalent binding action of ML210 with its target proteins has never been disclosed. To identify that ML210 acts as a direct covalent ...