Multiple postdoc and technician positions are available in Dr. Jin Wang’s group in the Department of Pharmacology and Chemical Biology at Baylor College of Medicine (BCM). BCM is located in the world largest medical center and has access to enormous biomedical resources. The research in the Wang lab is highly interdisciplinary and translational. The Wang lab has both chemistry and biology operations. For chemistry work, we have 17 chemical fume hoods, 4 ISCO combiflash chromatography systems, Agilent analytical LC-MS, Agilent preparative HPLC with auto-purification, and Genevac high throughput solvent evaporation, along with convenient access to 600 and 800 MHz NMR. For biology work, we have common equipment for biochemistry, molecular and cell biology, including tissue culture hoods, RT-PCR, plate reader, and imaging plate reader, and perform animal work to evaluate the efficacy of the experimental therapeutics developed in the group. In addition, we recently acquired a state-...
Toxic structured RNAs cause many different diseases. For example, myotonic dystrophy type 1 (DM1) is caused by r(CUG) repeat expansion [r(CUG) exp ] harboured in the 3’ untranslated region (UTR) of the dystrophia myotonica protein kinase (DMPK) mRNA. DM1 is one of the most common forms of adult-onset muscular dystrophy, affecting approximately 1 in 8,000 people. r(CUG) exp binds to and sequesters various proteins, particularly the pre-mRNA splicing regulator muscleblind-like 1 (MBNL1), which limits the number of MBNL1 available to regulate pre-mRNA splicing and causes system-wide defects. Recently, r(CUG) exp was confirmed to cause another disease called Fuchs endothelial corneal dystrophy (FECD), in which the repeat expansion resides in intron 3 of the transcription factor 4 (TCF4) pre-mRNA. FECD is a dominantly inherited corneal disease that affects as many as 5% of Caucasian males and results in vision impairment. Similar to DM1, r(CUG) exp al...